

Recent Progress in CCDs for Astronomical Imaging

Don Groom http://ccd.lbl.gov Lawrence Berkeley National Laboratory

Presented on behalf of the rest of the UC/LBNL+UCO/Lick group

... Steve Holland, 2000 January

... and with thanks to many of you for your patience and help

- Background
- Bigger CCDs
- Bigger arrays
- 4-side abutment
- Red response
- Transverse diffusion (MTF)
- Orthogonal transfer CCDs
- CCDs for adaptive optics

Public interest and publicity have always surrounded the construction of big telescopes...

Pasadena, 1936 April

... but the real revolution came as a thief in the night

JPL Traveling CCD Camera System 1976, Mt. Lemon 1.5 m $(Thinned\ 400 \times 400)$

The takeover has been fairly complete.

ESO optical sensitive area demographics:

It's hard to make big CCDs which can be read out in a fairly short time, but progress continues—

but, even so, CCDs are a long ways from the size of the photographic plates they replaced, and are likely to remain so.

The obvious solution is to build mosaics of CCDs

Gerry Luppino has made a nice summary of the progress (the "Luppino plot,") which shows an exponential rise in the number of pixels per detector, increasing by a factor of about 14 per decade

Electrical connections are the obvious limitation to making larger and larger CCD arrays—

Hamamatsu 2k×4k

To maximize the packing fraction, *i.e.*, to minimize dead space between CCD active regions, Marconi, LL/MIT, UC/LBNL, Steward, and perhaps other places are developing "4-side abutable" packages

Marconi has demonstrated a "next-generation" 4-side abutable package (only they don't call it that)

from Paul Jorden, Marconi

and LL/MIT is developing an abutable package for their orthogonal transfer CCDs (OTCCDs), which will perhaps show up on their more conventional $2k\times4k$ CCDs

from Barry Burke, LL/MIT

The UC/LBNL thick CCD has pads on the front side, and is hence intrinsically 4-side abutable

Any good abutable package has to come with a way to install it without hurting its neighbors—the more idiot-proof the better.

Marconi has come up with a really slick scheme, which I hope they will demonstrate during this conference. A shorter secondary guide rod prevents collisions; a CCD can be installed or removed between 4 neighbors with remarkable safety

from Paul Jorden, Marconi

There are attempts to decrease fringing and improve QE in the red—

SITe CCD in Keck Low-Res imaging spect: Quartz flat

Calculated QE with the present UC/LBNL AR coating—

Pushing into the red—

- LL/MIT: High-resistivity substrate with thicker epitaxial layer, thinned to 40 μ m
- UC/LBNL: > 10 k Ω -cm substrate (300 μ m), not thinned, depleted to back surface

—unnormalized broadband filter responses are shown for reference

Lateral diffusion (MTF) in the field-free region (thickness z_{ff}) IS an important issue; in most astro CCDs it makes the PSF much larger than a pixel

It's very easily seen in slanted cosmic ray muon tracks:

(Examples obtained with a UC/LBNL CCD with a 300 μm sensitive region)

In the UC/LBLNL CCDs we control z_{ff} by means of an external bias voltage

Measurements were made with a contact pinhole mask:

If the resolution is dominated by diffusion in the field-free region, then with the usual assumptions the x (or y) distribution at the front surface is given analytically by

$$q(x) = \frac{1}{2\sigma \cosh(\pi x/2\sigma)}$$

where

$$\sigma = z_{ff}$$

The modulation transfer function (MTF) is also 1/cosh, and can be combined with the pixel MTF to obtain the complete function for the CCD [Steve Holland]

How good is YOUR CCD?

MORAL OF THE STORY: Unless the thickness of the field-free region can be *controlled* and *minimized*, there is absolutely no point in going to smaller pixels!

Orthogonal-transfer CCDs (OTCCDs) have come of age.

Replace linear channel stops with channel "spots," and transfer charge in either direction

⇒ dance charge around to follow atmospheric turbulence effects

—early problems with charge traps seem to have been solved (Tonry, Burke, Schechter, et al.)

Kaiser, Tonry, and Luppino have a FAR more ambitious proposal (WFHRI) —

Finally: Very little in astronomical instrumentation is moving so fast as adaptive optics (AO)

There are many ways to do it; this cartoon shows one way to define the CCD requirements

This defines the requirements:

- \Longrightarrow FAST \Leftarrow readout (500 to 1000 frames/sec and rising toward 1500)
- $\bullet \implies low \ noise \iff$
- Only ≈ (4/π)n subarrays of perhaps 4 pixels each, for n actuators
 (n now a few hundred, but rising as fast as possible)
- Big pixels, if possible
- Marconi, PixelVision, LL/MIT, and others are actively developing the needed CCDs

Keck images of Uranus

—without AO

—with AO

In back of all of this—

Quality darkness at a modern big telescope is really, really hard to get and really, really expensive— > 1000/hr, and maybe $\gg 1000/hr$

So DO

- Cover the focal plane or whatever with as many pixels as you can
- Extend the $QE(\lambda)$ as much as silicon allows
- Minimize lateral diffusion (MTF)

and DON'T

- Leave cracks
- Waste excessive time reading out
- Waste time focusing

"Don't let any photons fall onto the floor"